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Abstract
We examine the behaviour of non-interacting Fermi gases at low temperature.
If there is a confining potential present the thermodynamic behaviour is altered
from the familiar results for the unconfined gas. The role of de Haas–
van Alphen type oscillations that are a consequence of the confining potential
is considered. Attention is concentrated on the behaviour of the chemical
potential and the specific heat. Results are compared and contrasted with those
for an unconfined and a totally confined gas.

PACS numbers: 03.75.Ss, 05.30.Fk, 71.10.Ca

1. Introduction

A gas of free (non-self-interacting) fermions is a simple model of great value, useful for
illustrating the fundamental differences between Bose and Fermi systems at finite temperature
in elementary statistical mechanics [1–4]. With the rapid advances that have been made in the
cooling and trapping of atomic gases (see [5] for a review) the emphasis has shifted to systems
confined by simple harmonic oscillator potentials. The presence of a confining potential can
lead to considerable alterations in the behaviour of the system when compared to the free gas.

There have been a number of theoretical studies of confined Fermi gases. Butts and
Rokhsar [6] presented an analysis based around approximating the sums over the discrete
energy levels that occur with integrals. A numerical study of Schneider and Wallis [7] (see
also [8]) showed that thermodynamic quantities, such as the specific heat, exhibited step-like
behaviour. The analysis of the particle density and kinetic energy density for one and higher
dimensional gases has been presented at both zero and finite temperatures [9–14] using Green’s
function or density matrix methods. An extensive analysis using a symmetrized density matrix
approach has been given in [15–21]. Finally, we mention recent work by the present author
[22, 23] that presents an analytical approach to the thermodynamics of confined Fermi gases,
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pointing out the analogy with the de Haas–van Alphen effect. The purpose of the present
paper is to apply the analysis of [22, 23] to partially confined gases.

The de Haas–van Alphen effect is concerned with the low temperature behaviour of a gas
of charged particles obeying Fermi–Dirac statistics in a constant magnetic field of strength B.
When the magnetic field is varied, instead of a monotonic dependence of thermodynamic
quantities such as the magnetic susceptibility on the magnetic field B, what is observed [24] is
an oscillatory behaviour whose period of oscillation is determined by 1/B. These oscillations
are now referred to as de Haas–van Alphen oscillations, or the de Haas–van Alphen effect.
An early theoretical study of this [25] showed how the oscillations could be found from the
thermodynamic potential. Because the de Haas–van Alphen oscillations manifest themselves
directly in the thermodynamic potential, they will be present in other thermodynamic quantities
such as the specific heat. A classic analysis of the thermodynamic potential, that we make
use of, was given by Sondheimer and Wilson [26]. The de Haas–van Alphen effect provides
a valuable technique for studying the Fermi surface in condensed matter physics [27].

The outline of our paper is the following. In section 2 we evaluate the thermodynamic
potential for a three-dimensional gas of fermions with confinement of the particles in one or
two dimensions by a harmonic oscillator potential. (The formalism is set up for any number
of dimensions.) The chemical potential is evaluated in section 3, and the application to the
specific heat is given in section 4. A brief summary of the results is given in section 5. Two brief
appendices summarize the results for the free gas in D dimensions, and the two-dimensional
partially confined gas.

2. Thermodynamic potential

Consider the noninteracting Fermi gas in D-dimensional space, and assume that there is a
confining potential of the form

V (x) = 1

2
m

p∑
j=1

ω2
j x

2
j (2.1)

with x = (x1, . . . , xD) being the D-dimensional Cartesian coordinates, ωj the frequencies
that characterize the trapping potential, m the fermion mass and p � D a number describing
the dimension of the trap. The case of full trapping (p = D) has been dealt with elsewhere
for both isotropic [22] and anisotropic traps [23], so we will concentrate only on partial
confinement (p < D) here. To deal with the unconfined spatial directions we will impose box
normalization with periodic boundary conditions and the large box limit taken. In this case
the single-particle energy eigenvalues read (with h̄ = 1 units used)

Enk =
p∑

j=1

(
nj +

1

2

)
ωj +

1

2m

D∑
j=p+1

(
2πkj

Lj

)2

(2.2)

where Lj is the dimension of the box in the jth direction, nj = 0, 1, . . . and kj = 0,±1, . . . .

The single-particle canonical partition function reads (with β = T −1 in units with the
Boltzmann constant set equal to 1)

Z(β) =
∞∑

n=0

∞∑
k=−∞

e−βEnk . (2.3)

The sums over n are recognized as geometric series and are easily performed. To make the
following analysis easier we will assume that the harmonic oscillator frequencies are all equal,
meaning that the confining potential is isotropic in the p-dimensional confinement subspace.
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For a description of how the anisotropic case can be dealt with, see [23]. We will also assume
that the box used for normalization purposes is isotropic, so that Lj = L for all j . The sums
over k can be expressed in terms of θ -functions, but if we take the limit where L is very large
(specifically mT L2 � 1) the sums over k can be approximated with integrals leading to

Z(β) =
(

mL2

2πβ

)(D−p)/2
e−pβω/2

(1 − e−βω)p
. (2.4)

Because our aim is to examine the role of de Haas–van Alphen type terms in the
thermodynamics, we will adopt the classic analysis of Sondheimer and Wilson [26]. Using
Laplace transform theory, it can be shown that the thermodynamic potential of the system, �,
can be expressed as

� = −1

4
β

∫ ∞

0
dE

Z(E)

cosh2 1
2β(E − µ)

(2.5)

where

Z(E) = 1

2π i

∫ c+i∞

c−i∞
dβ eβEβ−2Z(β) (2.6)

with Z(β) being the canonical partition function, given in this case by equation (2.4) (c > 0
is an arbitrary constant). The analysis now consists of evaluating equation (2.6) by closing
the contour in the complex plane. The nature of how this is done depends on whether D − p

in equation (2.4) is an even or odd integer. If (D − p)/2 is an integer, then the integrand of
equation (2.6) is a meromorphic function of β with poles at β = 2π ik/ω for k = 0,±1, . . . .

The contour can be closed in this case with a semi-circle extended to infinity and the result
evaluated by residues. When D − p is an odd integer, then β = 0 is a branch point for
the integrand in equation (2.6) and we introduce a branch cut along the negative real β-axis
extending from the origin. The contour can be closed in the left-hand side of the complex
β-plane with a deformation around the branch cut. The portion of the contour integral around
the branch cut can be related to the generalized, or Hurwitz, ζ -function [28] resulting in a
closed form expression for Z(E) that we will give below. In either case (branch cut or not)
provided that p �= 0, there are a series of poles along the imaginary β-axis that, as in the
de Haas–van Alphen case [26], are responsible for an oscillatory part of �.

To keep the analysis simple, we will now specialize to D = 3 and look at the evaluation
of � for p = 1, 2. The application to the particle number, chemical potential and specific heat
will be given in sections 3 and 4. The case of general D with p = 0 is given in appendix A
for comparison. We also outline the results for D = 2 in appendix B.

2.1. One-dimensional trapping

We will take D = 3 and p = 1 here and refer to this case as one-dimensional trapping since
the confining potential is only non-zero in one spatial dimension. From equations (2.4) and
(2.6) we have

Z(E) = mL2

4π2i

∫ c+i∞

c−i∞
dβ β−3 eβ(E−ω/2)

(1 − e−βω)
. (2.7)

There is a pole of order 4 at β = 0 and simple poles at β = 2π ik/ω for k = ±1,±2, . . . . If
we close the contour in the left-hand side of the complex β-plane as described above it can be
shown that

Z(E) = Z0(E) + Zr (E) (2.8)
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with

Z0(E) = mL2

48πω
E(4E2 − ω2) (2.9)

the contribution coming from the β = 0 pole, and

Zr (E) = −mL2ω2

8π4

∞∑
k=1

sin
[
2πk

(
E
ω

− 1
2

)]
k3

(2.10)

the contribution coming from the rest of the poles away from the origin along the imaginary
axis.

We may substitute equations (2.9) and (2.10) into equation (2.5) and obtain �0 and �r

with an obvious notation. Making a change of variable in the integration results in

�0,r = −1

2

∫ ∞

− 1
2 βµ

dθ
Z0,r

(
µ + 2

β
θ
)

cosh2 θ
. (2.11)

If we assume that the temperature is low enough so that βµ � 1 (or T � µ) then up to
exponentially small terms we can replace the lower limit of the integral with −∞. This
approximation enables us to evaluate

�0 � − mL2

48πω
(4µ3 − ω2µ + 4π2µT 2) (2.12)

in a straightforward way. For �r we find

�r � mL2ω

4π2β

∞∑
k=1

sin
[
2πk

(
µ

ω
− 1

2

)]
k2 sinh

(
2π2k
βω

) . (2.13)

The term of � that we have called �r shows the oscillations in µ/ω familiar from the
de Haas–van Alphen effect (although the detailed expression is different here).

2.2. Two-dimensional trapping

We will refer to the D = 3, p = 2 case as two-dimensional trapping since the confining
potential is only non-zero in two of the spatial directions. From equations (2.4) and (2.6) we
have

Z(E) = L

2π i

( m

2π

)1/2
∫ c+i∞

c−i∞
dβ β−5/2 eβ(E−ω)

(1 − e−βω)2
. (2.14)

This time we introduce a branch cut along the negative β-axis as described above. The contour
is deformed around the branch cut resulting in a contribution of the Hankel type to Z(E) that
we will call Z0(E), as well as contributions coming from double poles at β = 2π ik/ω for
k = ±1,±2, . . . that we will call Zr (E). An elementary manipulation enables us to express
Z0(E) as

Z0(E) = L

3π
(2ω)3/2m1/2

[
ζ

(
−5

2
, 1 +

E

ω

)
− E

ω
ζ

(
−3

2
, 1 +

E

ω

)]
(2.15)

where ζ(s, a) is the generalized, or Hurwitz, ζ -function [28]. For Zr (E) we find

Zr (E) = L(mω)1/2

16π4

∞∑
k=1

{
5ω

k7/2
sin

(
2πk

E

ω
− π

4

)
− 4πE

k5/2
cos

(
2πk

E

ω
− π

4

)}
. (2.16)

We still have equation (2.11) holding; however, this time the evaluation of �0 is not quite so
trivial. Making the approximation βµ � 1 as before, so that the temperature is low, it can be
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seen because of the cosh2 θ present in the denominator, that the dominant contribution to the
integral will come from small values of θ . The numerator can be developed in a power series
around θ = 0 and the first few terms integrated without difficulty to give

�0 � −Z0(µ) − π2

6
T 2Z′′

0(µ) − 7π4

360
T 4Ziv

0 (µ) + · · · . (2.17)

This can be recognized as the Sommerfeld expansion [2, 4, 27]. For �r we find

�r � L(mω)1/2

8π2β

∞∑
k=1

{
4πµ

ωk3/2

cos
(
2πk E

ω
− π

4

)
sinh θk

− 1

k5/2

(
3

sinh θk

+ 2θk

cosh θk

sinh2 θk

)
sin

(
2πk

E

ω
− π

4

)}
(2.18)

where to save writing we have defined

θk = 2π2k

βω
. (2.19)

Again the oscillatory de Haas–van Alphen type of terms are present in �, although the result
is more complicated than for one-dimensional trapping.

So far the only approximation that we have made is the low temperature approximation
T � µ used to simplify the evaluation of certain integrals. If we now make the further
assumption that µ � ω, then it is possible to obtain a more friendly expression for �0 than
that found by a straightforward substitution of equation (2.15) into equation (2.17). A short
calculation results in

�0

L(mω)1/2
� − 16ω

105
√

2π

(µ

ω

)7/2
+

[
ω

9
√

2π
− 2πT 2

9
√

2ω

](µ

ω

)3/2
+ · · · . (2.20)

The next term in equation (2.20) is of order (µ/ω)−1/2 so the neglected terms will be negligible
for large µ/ω.

3. Particle number and chemical potential

In this section we will use the expressions obtained for the thermodynamic potential in
section 2 to study the relationship between the particle number and the chemical potential.
Generally the particle number is expressed in terms of the thermodynamic potential by

N = −
(

∂�

∂µ

)∣∣∣∣
T ,ω,L

. (3.1)

Given the natural split of � = �0 + �r as described in section 2 we have a similar split

N = N0 + Nr (3.2)

with N0 and Nr obtained from equation (3.1) with � = �0 and �r , respectively.

3.1. One-dimensional trapping

From equation (2.13) we find that

N0 � mL2

48πω
(12µ2 − ω2 + 4π2T 2) (3.3)

and from equation (2.13) that

Nr � −mL2

2πβ

∞∑
k=1

cos
[
2πk

(
µ

ω
− 1

2

)]
k sinh

(
2π2k
βω

) . (3.4)
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The term Nr has its origin in the de Haas–van Alphen part of the thermodynamic potential. If
we temporarily ignore Nr , then by setting N = N0 in equation (3.3) we can solve for

µ

ω
�

(
4πN

mωL2
+

1

12
− π2T 2

3ω2

)1/2

. (3.5)

In order to get some idea of the magnitude of µ, we will take some typical values for m
and ω. We use [5] ω ∼ 102–103 s−1 and m ∼ 10−26 kg as reasonable orders of magnitude.
(We take a typical atomic mass to be about 10 times that of hydrogen.) Restoring the factors
of h̄ results in h̄/(mω) ∼ 10−11 m−2. For the neglect of interactions to be valid we require
L2/N � r2

0 where r0 ∼ 10−9 m is the size of a typical atom. (This allows the gas to be dilute.)
We then find (restoring h̄ = 1 units) that

N

mωL2
� 107. (3.6)

This still allows large values of µ/ω from equation (3.5). We have already assumed that
βµ � 1 in deriving the thermodynamic potential. If we also require µ/ω to be large, this
allows us to have T as small as we like, so our approximations are perfectly consistent for
examining the low temperature limit.

For large values of N/(mωL2), we see from equation (3.5) that we can further approximate
(for T/ω not too large)

µ

ω
�

(
4πN

mωL2

)1/2

(3.7)

showing that µ scales like N1/2. This contrasts with the result for the unconfined gas that
scales like N2/3 (see equation (A.6)). The N-dependence in equation (3.7) is the same as that
for the unconfined gas in four spatial dimensions.

It now remains to see if the de Haas–van Alphen part of � has any effect on the result for µ.
This requires knowledge of the sum in equation (3.4). For large values of T/ω, where large can
mean T/ω � 1, it is clear that the presence of the factor of sinh(2π2kT /ω) in the denominator
of the summand suppresses any contribution that Nr could make to the total particle number.
(Since µ is assumed to be large, the µ2 contribution from N0 will be the dominant term.)
Thus if the de Haas–van Alphen oscillations are to affect the value we have found for µ in
equation (3.7) they can only do so as T → 0. As T → 0, the sum in equation (3.4) becomes
more slowly convergent; however, it is possible to obtain an analytical approximation that is
valid at low temperatures as follows. (Similar expressions were obtained previously for fully
trapped gases in [22, 23].) Add and subtract terms in the sum to obtain

Nr = −mL2

2π
(S1 + S2) (3.8)

where

S1 = 1

β

∞∑
k=1

cos
( 2πkµ

ω
− πk

) − 1

k sinh θk

(3.9)

S2 = 1

β

∞∑
k=1

1

k sinh θk

. (3.10)

The most complete way to analyse S1 is to use the Poisson summation formula to give a
result that is valid for all temperatures; however, if we are only interested in low temperatures,
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we can use the simpler Euler–Maclaurin formula [29]. By adding in the k = 0 term to the
sum in S1 it is possible to show that

S1 � −T ln cosh
{ ω

4T

(
2
µ

ω
− 2

[µ

ω

]
− 1

)}
+

ω

8

(
2
µ

ω
− 2

[µ

ω

]
− 1

)2
(3.11)

where [x] denotes the largest integer less than or equal to x. For S2, the low temperature
expansion is most easily obtained by making use of the inverse Laplace transform of the
�-function to obtain

S2 = T

π i

∫ c+i∞

c−i∞
dz�(z)

(
2π2T

ω

)−z

ζ(z + 1)(1 − 2−z)ζ(z) (3.12)

where ζ(z) is the Riemann ζ -function, and c > 1. Closing the contour in the left-hand
side of the complex plane, noting the contributions from poles at z = 1, 0,−1 results in the
asymptotic expansion

S2 � ω

12
− T ln 2 +

π2T 2

6ω
. (3.13)

In this way we obtain a simple analytical approximation for the sum in equation (3.4) defining
Nr that is valid as T → 0. It is then straightforward to show that because Nr really only
involves µ/ω − [µ/ω], Nr makes a negligible contribution to N.

We have verified conclusions based on the analytical approximations just described by
solving N = N0 + Nr numerically for µ for a range of values for N/(mωL2) consistent
with equation (3.6). Even as T → 0 the step-like features that were so prominent in the
fully trapped gas [22, 23] are virtually absent here. The behaviour for µ/ω as a function of
N/(mωL2) followed the simple result of equation (3.7) to a very good approximation.

3.2. Two-dimensional trapping

If we take � = �0 in equation (3.1) with equation (2.20) used for �0, it is easily seen that

N0

L(mω)1/2
� 8

15
√

2π

(µ

ω

)5/2
− 1

6
√

2π

(
1 − 2π2T 2

ω2

)(µ

ω

)1/2
. (3.14)

With equation (2.18) used for �r , we find

Nr � L(mω)1/2

4πβω

∞∑
k=1

{
4πµ sin

(
2πk

µ

ω
− π

4

)
ωk1/2 sinh θk

+
1

k3/2

(
1

sinh θk

+ 2θk

cosh θk

sinh2 θk

)
cos

(
2πk

µ

ω
− π

4

) }
. (3.15)

(θk was defined in equation (2.19).) Unlike the one-dimensional trapped case, Nr contains an
explicit factor of µ this time, so the importance of Nr in the evaluation of µ is not so obvious.

If we temporarily ignore Nr and set N = N0 in equation (3.14), then we can solve for
µ = µ0 with

µ0

ω
�

(
15

√
2πN

8L(mω)1/2

)2/5

. (3.16)

This gives a dependence on N proportional to N2/5 in place of N1/2 for one-dimensional
trapping, and N2/3 for the free gas. This is the same as the N-dependence for the five-
dimensional unconfined gas. To estimate the size of µ a repeat of the estimate in section 3.1,
this time assuming L/N � 10−9 results in

N

L(mω)1/2
� 104. (3.17)
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Figure 1. The chemical potential scaled by the trap frequency plotted as a function of the
dimensionless combination N

L(mω)1/2 . The temperature is given by T = 0.001ω.

We now examine the contribution of Nr to N. Because of the dependence of the summand
of equation (3.15) on fractional powers of k it is not possible to obtain such a simple analytical
expression as we had before. If we look at the T → 0 limit of Nr and keep only the leading
order term for large µ/ω, it can be shown that

Nr � L(mω)1/2µ

2π2ω

∞∑
k=1

sin
(
2πk

µ

ω
− π

4

)
k3/2

. (3.18)

The remaining sum in equation (3.18) can be expressed in terms of polylogarithms to give a
closed form expression

Nr � L(mω)1/2µ

2π2ω
Im{e−iπ/4Li3/2(e

2π iµ/ω)}. (3.19)

(Here Im denotes the imaginary part, and Lis(z) = ∑∞
n=1 zn/ns defines the polylogarithm.)

The other terms in equation (3.15) can be approximated in a similar way if desired, but
equation (3.19) turns out to be sufficiently accurate as T → 0.

We have examined the importance of the de Haas–van Alphen contribution to the
chemical potential by solving N = N0 + Nr numerically for µ and comparing the result with
equation (3.16). The results are shown in figure 1. As the temperature was reduced oscillations
were clearly visible in the result, showing that the de Haas–van Alphen contributions do have
an effect on the result in contrast to the case of one-dimensional trapping. However the results
did not show the dramatic step-like behaviour found for the fully trapped gas [7, 22, 23]. This
is attributable to the different µ-dependence of the de Haas–van Alphen part of � for the
fully and partially trapped gases. The general shape of the curve follows equation (3.16). In
order to show the oscillations more clearly, we have plotted the difference between the true
result and the approximation of equation (3.16) in figure 2 for two different temperatures.
The oscillations become more pronounced as the temperature is reduced (as expected) and the
result found analytically in equation (3.19) becomes a very good approximation.
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− 0

Figure 2. The difference between the approximation in equation (3.16) for the chemical potential
and the actual value plotted as a function of the particle number. This difference shows the
contribution that the de Haas–van Alphen part of the thermodynamic potential makes to the
chemical potential. The lower curve is for T = 0.01ω (red online) and the upper curve is for
T = 0.001ω (black online).

4. Specific heat

To compute the specific heat we first need the internal energy U defined in terms of the
thermodynamic potential � by

U = ∂

∂β
(β�)

∣∣∣∣
βµ,ω,L

. (4.1)

With the decomposition � = �0 + �r this allows us to identify the de Haas–van Alphen
contribution to the internal energy. The specific heat at constant volume (fixed box size) C is
then defined in terms of U by

C =
(

∂U

∂T

)∣∣∣∣
N,ω,L

. (4.2)

=
(

∂U

∂T

)∣∣∣∣
µ,ω,L

−
(

∂U
∂µ

)∣∣
T ,ω,L

(
∂N
∂T

)∣∣
µ,ω,L(

∂N
∂µ

)∣∣
T ,ω,L

. (4.3)

Although the internal energy U has a simple representation as U = U0 + Ur , the same is not
true for the specific heat because of N being held fixed in equation (4.2). This complicates the
identification of de Haas–van Alphen contributions to the specific heat.

4.1. One-dimensional trapping

By taking � = �0 in equation (4.1) with �0 given by equation (2.12), it is easy to see that

U0 = mωL2

(
µ3

6πω2
+

πµT 2

6ω2

)
. (4.4)
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Before computing the de Haas–van Alphen contribution to the internal energy we will calculate
the specific heat with any de Haas–van Alphen contributions ignored. If we use equation (4.4)
for U and equation (3.3) for N in equation (4.3) it can be shown that the specific heat is given
by

C0 � πmL2µT

6ω
. (4.5)

This gives the linear temperature dependence familiar from the free gas at low temperature
(see equation (A.8) or [2, 3, 4, 27]). Elimination of µ using equation (3.7) results in

C0 � π

3
(πNmωL2)1/2 T

ω
. (4.6)

We now need to examine the specific heat when the de Haas–van Alphen contributions
are present. Their contribution to the internal energy can be found by using � = �r with �r

given by equation (2.13) in equation (4.1). The result is

Ur = mL2

2π

∞∑
k=1

{
−µT cos(2πkµ/ω − πk)

k sinh θk

+
πT 2 cosh θk

k sinh2 θk

sin(2πkµ/ω − πk)

}
. (4.7)

Although it is not possible to write C as a simple sum with the de Haas–van Alphen
contribution clearly displayed, we can look at the leading behaviour for large µ. Using µ/ω

as the expansion parameter, and taking U = U0 + Ur , it can be shown that

1

mωL2

(
∂U

∂T

)∣∣∣∣
µ,ω,L

� µ

ω

{
πT

3ω
− 1

2π

∞∑
k=1

(1 − θk coth θk)
cos(2πkµ/ω − πk)

k sinh θk

}
(4.8)

1

mωL2

(
∂U

∂µ

)∣∣∣∣
T ,ω,L

� 1

2π

(µ

ω

)2
(4.9)

as the leading terms. A similar calculation applied to N = N0 + Nr with N0 and Nr given by
equations (3.3) and (3.4) respectively results in

1

mωL2

(
∂N

∂T

)∣∣∣∣
µ,ω,L

� πT

6ω2
− 1

2πω

∞∑
k=1

(1 − θk coth θk)
cos(2πkµ/ω − πk)

k sinh θk

(4.10)

1

mωL2

(
∂N

∂µ

)∣∣∣∣
T ,ω,L

� 1

2πω

(µ

ω

)
. (4.11)

If the results of equations (4.8)–(4.11) are used in equation (4.3) it can be seen that despite the
fact that the de Haas–van Alphen contributions alter the individual terms that contribute to the
specific heat, a cancellation occurs and we recover equation (4.5) to leading order in µ.
Since we found that equation (3.7) was a reliable approximation for µ even with the
de Haas–van Alphen contributions included, we can conclude that equation (4.6) provides
a good approximation to the specific heat. The de Haas–van Alphen contributions do not
vanish identically for the specific heat, but because they only show up below leading order
the specific heat will be dominated by equation (4.6), and they would not be expected to be
observable even at very low temperatures.

4.2. Two-dimensional trapping

With �0 given by equation (2.20) and �r given by equation (2.18) we find

1

L(mω)1/2
U0 � 4

√
2ω

21π

(µ

ω

)7/2
− ω

18
√

2π

(
1 − 10π2T 2

ω2

) (µ

ω

)3/2
+ · · · (4.12)
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Figure 3. The specific heat scaled by the particle number and temperature plotted as a function of
the particle number with T = 0.001ω held fixed.

1

L(mω)1/2
Ur � µ2

βω2

∞∑
k=1

sin(2πkµ/ω − π/4)√
k sinh θk

+ · · · . (4.13)

Only the terms that contribute to the specific heat at leading order have been included here for
brevity. From these two expressions we can compute

C � 2
√

2πT

9ω

(µ

ω

)3/2
L(mω)1/2 (4.14)

as the leading order behaviour of the specific heat. Although there is no explicit dependence
on the oscillatory terms (unlike the case of complete trapping [22, 23]) there can still be an
implicit dependence through the oscillatory behaviour of µ. This was discussed in section 3.
We show the specific heat in figure 3.

5. Discussion and conclusions

We have examined the possible role of de Haas–van Alphen type oscillations in partially
confined gases of fermions. Although our efforts were concentrated on three-dimensional
gases (the two-dimensional case is outlined in appendix B), it is clear how the analysis could
be applied to any spatial dimension. For two-dimensional trapping we only examined the case
of an isotropic potential, but it would be quite straightforward to adapt the approach of [23]
to deal with anisotropic potentials. Experience gained from [23] indicates that the maximal
effect for the de Haas–van Alphen oscillations occurs for isotropic potentials, or those for
which the frequencies are rational multiples of each other.

Although we established the existence of oscillatory de Haas–van Alphen type
oscillations in the thermodynamic potential for partially trapped gases (and hence in derived
thermodynamic expressions) their overall contribution turned out to be small. This contrasts
with fully trapped gases where there can be quite marked oscillations present in expressions
such as the chemical potential and specific heat at low temperature [7, 22, 23]. The dependence
of the chemical potential and specific heat on the particle number was altered from that of
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the unconfined gas due to the trapping potential. If p denotes the dimension of the confining
potential and D is the spatial dimension, it was found that the confined gas (to leading order
in µ at low temperature) behaved like the unconfined gas in D + p spatial dimensions.

Appendix A. Unconfined gas in any dimension

In this appendix we wish to summarize the application of the analysis described in the main
part of the paper to the case where the gas is not trapped. We will keep the dimension D
general here to demonstrate the dimensional dependence of the results for comparison with
the partially trapped gas. The results for D = 3 are standard and are covered in a number of
standard textbooks [2–4, 27].

In keeping with the approach and notation of section 2 we will confine the gas to a
cubical box of side L. The partition function for the µ = 0 gas is found by taking p = 0 in
equation (2.4). Using this result in equation (2.6) gives us

Z(E) =
(

mL2

2π

)D/2
1

2π i

∫ c+i∞

c−i∞
dβ β−2−D/2 eβE (A.1)

and the thermodynamic potential is recovered from equation (2.5). β = 0 is a branch point of
the integrand and, as in section 2.2, we choose a branch cut along the negative real β-axis and
close the contour in the left-hand side of the complex β-plane with a deformation around the
branch cut. This enables us to relate equation (A.1) to the standard Hankel representation for
the �-function [28]. After a short calculation, the result for Z(E) is found to be

Z(E) =
(

mL2

2π

)D/2
E1+D/2

�(2 + D/2)
. (A.2)

This is related to the density of states and equivalent results can be obtained in a variety of
other more elementary ways. Making use of the Sommerfeld expansion, assuming βµ � 1
as usual, we obtain(

2π

mL2

)D/2

� � − µ1+D/2

�(2 + D/2)
− π2T 2µD/2−1

6�(D/2)
+ · · · . (A.3)

The particle number N, defined by equation (3.1), becomes(
2π

mL2

)D/2

N � µD/2

�(1 + D/2)
+

π2T 2µD/2−2

6�(D/2 − 1)
+ · · · . (A.4)

(For D = 2 the second term vanishes, as is clear from equation (A.3), and the next to leading
order term is of order T 4.) We can solve equation (A.4) for µ with the result

µ � µ0

[
1 −

(
D

2
− 1

)
π2T 2

6µ2
0

]
(A.5)

where

µ0 = 2π

mL2
[�(1 + D/2)N ]2/D (A.6)

is the chemical potential at T = 0. This shows the scaling µ ∝ N2/D for general dimension D.
The internal energy is easily computed using equation (4.1) to be

U � D

2

(
mL2

2π

)D/2 {
µ1+D/2

�(2 + D/2)
+

π2T 2µD/2−1

6�(D/2)
+ · · ·

}
. (A.7)

With µ ∝ N2/D this shows U ∝ N1+2/D .
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The specific heat follows from equation (4.3) as

C � π2

3�(D/2)

(
mL2

2π

)D/2

T µD/2−1. (A.8)

For low T we can replace µ in equation (A.8) with µ0, so it can be seen that the dependence
of the specific heat on the particle number behaves like N1−2/D .

Appendix B. Partially confined gas in two dimensions

In this appendix we summarize the main results for the case of a two-dimensional partially
trapped gas. The results are contrasted with those for the unconfined gas (as found in
appendix A) and fully confined gas found in [22].

The partition function is obtained by setting D = 2 and p = 1 in equation (2.4). Because
this results in a β−1/2 factor, when we use the result for Z(β) in equation (2.6) and close the
contour it is necessary to deform the contour around a branch cut as described in section 2.2.
For �0, assuming βµ � 1 and µ/ω � 1, we find

�0 � Lm1/2(2ω)3/2

3π

{
−2

5

(µ

ω

)5/2
+

1

16

(
1 − 4π2T 2

ω2

) (µ

ω

)1/2
+ · · ·

}
. (B.1)

For �r we find

�r � −L(mω)1/2

2πβ

∞∑
k=1

(−1)k sin(2πkµ/ω − 3π/4)

k3/2 sinh θk

(B.2)

with θk being defined in equation (2.19). The results of equations (B.1) and (B.2) can then be
used to find

N0 � 2L(2mω)1/2

3π

{(µ

ω

)3/2
− 1

32

(
1 − 4π2T 2

ω2

) (µ

ω

)−1/2
+ · · ·

}
(B.3)

Nr � L(mω)1/2 T

ω

∞∑
k=1

(−1)k cos(2πkµ/ω − 3π/4)

k1/2 sinh θk

. (B.4)

(It is necessary to keep the second term indicated in N0 because it gives the leading order
contribution to (∂N/∂T )|µ,L,ω, needed to compute the specific heat using equation (4.3).)

We can now solve N = N0 + Nr for µ. Because Nr has no explicit factors of µ, the
situation is very similar to that discussed in section 3.1. In this case we find

µ

ω
�

(
3πN

2
√

2L(mω)1/2

)2/3

. (B.5)

The de Haas–van Alphen part of N, which we have called Nr , is negligible in comparison with
N0, and equation (B.5) is a very good approximation even for very low values of T � ω. We
verified this conclusion by solving for µ numerically over a range of different temperatures.

The internal energy can be computed as described earlier. With only the leading order
term in the specific heat kept, it can be shown using equation (4.3) that

C � L(mω)1/2

√
2π

3

(µ

ω

)1/2 T

ω
. (B.6)

This gives the familiar linear temperature dependence. Because the oscillations are invisible
in µ/ω, they do not show up in the specific heat either. Combining equation (B.5) with
equation (B.6) shows that C ∝ N1/3, a result that is typical of the unconfined three-dimensional
gas. Once again we see that it is as if the confined spatial direction has increased the effective
total spatial dimension by one, from 2 to 3. This is also true for the chemical potential found
in equation (B.5).
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